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Abstract

Heat or mass transfer is considered in a falling laminar film with a parabolic speed profile. The speed profile is
determined by gas flow at the film’s free surface. Exact analytical solutions have been obtained for temperature or
concentration profiles under general boundary conditions of the third kind, as well as for the corresponding Nusselt
(Sherwood) numbers. The two cases of most practical importance are discussed in more detail: (I) heat or mass transfer
with the wall and (II) mass transfer with the gas. Subsequent analysis of the solution has resulted in good approximate
formulas for these two cases. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Exchange devices employing falling films are used
extensively in chemical engineering [1]. Principal ad-
vantages are high rates of heat or mass transfer and
short contact time (a major consideration when dealing
with heat-sensitive materials). Falling-film absorbers are
used for dissolving gases in liquids, separation of gas
mixtures and removal of unwanted components from a
gas flow. Mass transfer between a wall and a liquid film
takes place during dissolution, corrosion or anode dis-
solution of metals in electrochemical processes, etc. In
these cases, information pertaining to the temperature or
concentration profiles is important, as are the Nusselt or
Sherwood numbers.

In this article, heat or mass transfer is considered in a
falling laminar film with a generalized parabolic speed
profile determined by the action of gas flow on the free
surface of the film. Until now, exact solutions for heat or
mass transfer in laminar liquid films have been given
only for cases in which traction on the free surface of the
film is considered negligible, and almost exclusively for
boundary conditions of the first kind. Exact solutions
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are given for heat or mass transfer in a falling laminar
film with a generalized parabolic speed profile under
boundary conditions of the third kind. Analytically de-
rived approximate expressions for calculating these
solutions are given which can be used to greatly increase
the ease and speed of calculations.

Additionally, since the solution is exact, comparison
of the theoretical Nusselt (Sherwood) numbers with
experimental data can help to determine how well the
actual speed profile in a falling laminar film matches the
theoretical parabolic distribution.

2. Model description

We will consider the film to be laminar. The speed
profile of the falling film is considered to stabilize very
quickly. If the speed of the liquid is taken to be zero at the
wall, and traction at the gas interface to be equal to t,
then in a laminar film flowing down a vertical wall the
local vertical speed v at distance y from the wall will equal

1-Q
o) =~ S 202D, n
Here g is the acceleration of gravity, v is the cinematic
viscosity of the liquid, @ = —(1/pd)t/g is a dimen-
sionless parameter, expressing the relative strength of
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Nomenclature

temperature conductivity
concentration

diffusion coefficient
acceleration of gravity
temperature

speed

v,z coordinates

S N AR

Greek letters
o heat or mass transfer coefficient
o film thickness

A heat conductivity
v cinematic viscosity
o density

T traction
Superscripts

I case |

1T case II

Subscripts

av integral flow average
g gas interface

w wall interface

traction at the film surface and mass forces, p is the
density of the liquid. Formula (1) is easily found by di-
rect integration of the Navier-Stokes equation if the
viscosity terms dominate, pressure is considered con-
stant and the speed of the liquid in other directions is
equal to zero.

If the direction of the gas flow is the same as the
direction of gravity, then Q < 0; if the gas is static, or the
friction between the gas and the liquid can be considered
negligible, then Q = 0; if the direction of the gas flow is
directed against gravity, then Q > 0.

The speed profiles for various values of Q are shown
in Fig. 1. In this article we will consider only falling
films, i.e. 2<0.5. It should be pointed out that it is
unlikely for a film to retain laminar flow at any signifi-
cantly non-zero values of , although the exact
boundaries will be different in each concrete case. It has
been shown [2] that in the case of transfer between the
film and the wall, the effect of waves is negligible.
Therefore, the model discussed here should be applica-
ble to wavy-laminar flow for this situation. It will
probably be inapplicable to wavy-laminar flow in the
case of transfer between the film and the gas.

All physical properties of the liquid will be considered
to be constant, and chemical reactions inside the film will

Q=05

Q>0

v(y)
Fig. 1. Speed profiles in a falling laminar film.

be taken to be absent. Transfer by conduction (diffusion)
will take place only along y, because transfer along z will
be completely determined by the film flow. It has been
shown [3] for @ =0 that this is acceptable for Peclet
numbers Pe > 50, which is almost always attained in
practice. Heat transfer will then be defined by the equation

or T
D(y) g =a a—yz )
where z is the distance from the feed, « is the tempera-
ture conductivity and 7 denotes temperature.

We will suppose that the temperature at z = 0 will

equal some initial value Tj:

le:() = TO

Let o, be the wall’s transfer coefficient, which is con-
sidered to be the same for all z. Then the third-kind
boundary condition at the wall can be written as

or
il

A ay = aw(]jv:() - QDW(Z)),

y=0

where A is the heat conductivity and ¢, (z) is the tem-
perature of the wall’s surface.
In the same way, the boundary condition at the
gas interface can be written as
or

i
dy

= _OCE(T}’:5 - {f)g(Z)).

y=0
The heat problem to be solved can be written as
_ 2
£ s-@9 NoT | 2T
2v v 0z 0?2
0<y<o, z>0;
T|z:0:7b7 0<y<57

aT (2)
| = o (Tmo — ; 0;

ay o o ( y=0 @W(Z)) z>

or
A— = —0,(T—5 — .

ol e (Tyms — @g(2)), 2>0
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Two major cases are of interest: (I) heat or mass
transfer between the wall and the film, and (II) mass
transfer between the gas and the film (absorption). For
case I, heat exchange between the gas and the film can
be considered to be negligible, while mass exchange will
not take place; «, = 0. For case II, mass transfer be-
tween the film and the wall is absent, i.e. o, = 0. The
superscripts I and II will denote case I and case II; if
no superscript is present, then that formula pertains to
both cases.
We will rewrite the problem (2) in dimensionless
form. The dimensionless coordinates will be
1 z
E=1 —my and 9:5,

while the dimensionless temperature will equal

T(,0)—To . T(¢.0)—To
elE ) =—"2_"" or O =L "
CO=%0-1 CO= -
Then the problem (2) can be written as
00 090

Pe(1—Q)*(1-8) —==— 1, 0>0;
e(1-)"(1-5) 3, g <<l 0>0,
@|0:0:07 ¢<§<17

00 3
- :Biw(ﬂw(g)—@le), (7)>0; ()
o |y

00

- = —Biy(0,(0) — Ocy), 0>0.

0¢ |y
Here

Q g8

=1 "
is the Peclet number of the liquid film,
Bi, :“7“”5(1 - Q) and Big:%é(l - Q)

are the Biot numbers at the wall and gas interfaces, re-
spectively,

1 _(pw(g)_TO 1 _ (pg(e)_Tb
ﬁW(Q) B (PW(O) - TO and ﬁg(g) B ([)W(O) - TO’
i} 0u(0) - T H/py _ (Pg(g) —To
9,(0) = 0,0~ Ty and 9, (0) = 0,0 =T

Mass transfer in a falling mathematical film can be
described by (3) as well, if @ and 4 are replaced by the
diffusion coefficient D and T is replaced by the concen-
tration C.

Problems analogous to (3) have been previously
considered only for =0 and almost exclusively for
boundary conditions of the first kind (Bi, — co or
Bi, — o0). The exact solution for these conditions for
both cases in terms of infinite sums is given in [4] and [5];
the latter also gives asymptotic expressions for the sum

terms. An exhaustive review of other results can be
found in [6], all of which pertain to Q2 = 0.

For practical purposes, the intensity of heat or mass
transfer (Nusselt or Sherwood number) and its integral
average is of interest. The Nusselt (Sherwood) number
is defined as the ratio between the amount of heat
(mass) transferred to the film and the temperature
(concentration) difference between the heat (mass)
source and the average heat (concentration) of the
film. In this article, the Nusselt (Sherwood) number
will be found for the case when ¥, (0) and ¥,(0) are
constant.

The average temperature (concentration) of the film
at a given height will be calculated as the integral flow
mean

J, (& 0u(&)de [ 0(:.0)(1 - &)de
Sy p(&)de Jy(-&)ae

av

4)

In dimensionless terms, the Nusselt (Sherwood) number
will equal for case I

20!
a¢

N (0) = ] (5)

T1-6.

while for case 11

2o
Nu"(0) = — 1 — (f;‘f . (6)
The average Nusselt number for both cases equals
1 0
Nt (0) = ¢ / Nu(x) d. )
0
3. Solution

3.1. General approach

Problem (3) can be most easily solved by use of
Fourier series. Both sides of the differential equation and
the initial condition will be multiplied by some twice-
differentiable function ¥(¢) and integrated by & from 0
to ¢. Let

/; (1-&)P(O)6(E0)dé = 0(0),

then after integrating the right-hand side of the differ-
ential equation in (3) twice by parts, we will find

o1 dZW
+ 0 —-dé&.
/d dé? ¢

1 lel

,d@ o0
— — 00—
d¢

Pe(l — Q) a0 ‘]’a—f

¢ 4

(8)
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The initial condition in (3) can be written as
0(0) = 0. 9)

We will now require the function ¥(&) to satisfy the
homogenous Sturm—Liouville problem

d*y

— =21 -8y, < &<

déz ( é) ¢ >

dy

— | +BiyY|. (10)
=¢ -

Using (10), Eq. (8) can be written as

Pe(1 —Q) 0

= 770 + Biy ¥ (¢)9,(0)
+ Bi, P(1)0,(0). (1)

The solution of the system (11), (9) is

_ 1 o .
80 = g /0 [Biy ()9 (x) + Bi ¥(1)9 ()]
730 —x)

We will now determine Y(£) on the basis of (10).
The general solution of the differential equation has the
form

o - o (54 L)

3 - A
+A25‘D<Tﬂa§§ifz)] CXP(—552)7 (13)

where 4, and 4, are unknown constants and ®(a, b; x) is
the confluent hypergeometric function:

abx—l—l—z a—(‘;—n b(—lbj—)))i

For brevity, let

NV E L
@ =o( 1558 e (-5).
oL (3-03 P
g(C)—fQ(T,E,AC)eXP(*§€>

Then the boundary conditions in (10) can be written as

m(fé +Biwf(1)> +Az<j‘gf

+ Biwg(1)> =0;

¢=1

—Mgwﬁo.

(14)

In order for nontrivial solutions of this system to exist, it
is necessary and sufficient for the determinant of (14) to
be equal to zero, i.e.

C’¢Bgmka+mm0
+ Bz'wf(l)> =0.

dg . df
- <d _Blgg(d))) (d_f
(15)

Those values of 1 that satisfy this equation are the
eigenvalues of the system (10) and will be denoted 4,.
The corresponding eigenfunctions will be denoted
¥,(&). For brevity, we will write (15) in the form
A(%, ¢, Big, Biy,) = 0.

The constants 4; and 4, themselves can assume in-
finitely many values. However, it is convenient to de-
termine these constants on the basis of the second-kind
boundary condition in (10):

&=1

dg
taly (16)
Y
déley,’
where &, = ¢ for case I and &, = 1 for case II.

The first eigenvalues for various values of Bi,, and Bi,
as functions of ¢ are shown in Fig. 2.

It is now possible to write out the solution to the
initial system (3). In terms of Fourier series, the solution
can be written in the form

:im@%@ (17)

where the function ¥, (&) is given by Egs. (13) and (16),
and corresponds to the eigenvalue A,. If both sides of
(17) are multiplied by (1 — £)¥,(¢) and integrated by &
from ¢ to 1, then the left-hand side will equal 0,(0). The

right-hand side will simplify to B,( f P 52 'P2 dé,
because in view of the properties of ‘I’ (9]
1 2
d'v
1-&8)P,VP,dé=——= Y, dé
/¢< ) Pnde = ﬂ»i/¢ az 9
1|de, | dw, |'
- |y,
;Lf’ dé ¢ dé )
12
av
+ 5 Pndd
o d&
2
= gl (1 - éz) anqlmdé,/7
Ay S

so that if n # m f(;(l — &)Y, ¥,,dé = 0. (The system of
functions {¥,(£)} is orthogonal.)
Therefore, we find

B,(0) = ( ) .
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15

0 =075 05025 0 025 05 075 19
(@)

for case I, dotted lines are used for case II.

Putting this equation into (17) and using (12) gives the

solution

1 00 0

Y {wé) JRCEAOAE
( _

+ Biy ¥, (1)9y(x)] exp (—

/{/4)1(152)%@} |

If ¥,(x) and 9, (x) are constant (and therefore equal to
1), then

oEn=1-3Y [Bi¥.(¢) + Bis ¥, (1)]

(18)

: 7. (&)
=, (1-&)vde
)2
xexp| ——2—0]|. 19
P Pe(1 —Q)* (19)
It can be seen from the differential equation in (10) that
! 14y,
1762 Wnédézfiivn )
/¢ ( )#:(9) 22 de |,

so that the average temperature (concentration) given by
(4) can be easily found:

3
@av(e) =1 +m
<. [Bi,P,($) + Biy,P,(1)] d¥,|'
e @
52
X exp ( - 136(1—52)49) (20)

Using the boundary conditions in (10) to calculate

dy, |

15

0-1 -0.75 -0.5 =025 0 025 0.5 0.75 1¢

(b)

Fig. 2. The first eigenvalue for (a) Bi,, = 10 (case I), Bi; = 10 (case II) and (b) Bi,

= oo (case I), Bi; = oo (case II). Solid lines are used

and inserting (20) into the formulas (5) and (6), we

find

Nuwzw {Z, e w) ; o
/{;W ST
<l

where ¢ =1, Biy=0, 9, =1 for case and

¢ = ¢, Biy, =0, 9, =1 for case II. It can be seen that
for either case as 0 — oo

Nu(0) — =——= 72, (22)
If ¢ =0, then for case I the first root of (15) equals
ill = 1.6815 and limgy_.., Nu'(0) = 1.8850; this is Nus-
selt’s classic result. For case II /' =2.2628 and
limy_., Nu''(6) = 3.4135. The behavior of the Nusselt
numbers as functions of ¢ will be discussed in more
detail later.

Eq. (21) can be rewritten in the form

2-3¢p+¢°
3

d oo ,PZ(
x— | —1 .
de{ “(;ﬂaf;ué

/15
X exp <—m6)>>}.

Therefore, the average Nusselt number according to (7)
will equal

Nu(0) = Pe(1 —Q)*

)
2 sz(f)df

n
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2 -3¢+ ¢ Pe(l — Q)°
3 0

X In i 'Pi 1)
[ (1-3)P(E)de

X eXp (— 196(1719)40)) . (23)

3.2. Approximate expressions

Nu,, (0) =

We will now construct approximations to the exact
solution (18). In this regard, it is necessary to find ap-
proximate expressions for ¥(&) from Eq. (16) and for
the eigenfunctions /, from Eq. (15), as well as for the
integrals f(})(l — EP(&)de.

We will first consider Eq. (15). The function

r@=o(t5 g )ew (-3¢)

will be differentiated directly by use of the formula [7]

®(a,b;x) :g(D(a—i- 1,b+ 1;x),

dx b

while the derivative of

e = co( 255 308 e (-5¢)

will be found by use of the formula [7]
d b—1
d—xé(a,b,x) = [®(a,b;x) — ®(a,b — 1;x)].

Then
- (154

« 5-23 . i
+A(1 - )5‘1’<T §7Aé >:| exp( ZC )
and

dgi 2 - 3.wz
d_é_|: )é(p( 727/LC

4
3—-21 A
+<D< TREE ié)]exp(—ic_)

Asymptotic expansions for all relevant confluent hy-
pergeometric functions are given in Appendix A. For
case I, approximate expressions for the coefficients 4,
and 4, from Eq. (16) can be found by using (A.3), (A.4)
and (A.7), (A.8):

]

v1(0)2 [cos (520))1(@) +asent)sin ( 5200) )
<= e (), (24)

where {(¢) = 2|¢| —2arccos(|¢p|) +

Putting (A.3)—(A.8) into (15) and simplifying gives

1313 1(2/3) /.1n2
(Biw+2 13 /3—FE1§3; () /3)

X tan (12 + (sgn(¢)l(¢) — n)%) +V3Bi, =0. (25)

For case II, use of (A.5), (A.6) and (A.9), (A.10) gives

3! 7/6 1/6
(1/3)2 vl

x [cos <1"2 - gn)f(f) —Jsin (%f§n>g(é)} .

Putting (A.3)-(A.6), (A.9) and (A.10) into (15) and
simplifying gives

I
\/1—¢*"tan <1nZ (sgn(¢){(d) — n)%) + Bi, = 0.

(27)

(&) =

Numerical comparison of the first and second roots of
Egs. (25) and (27) and of Eq. (15) is shown in Fig. 3. The
error for other eigenvalues can be only less. For prac-
tical applications, we suggest that the first eigenvalue be
calculated exactly from (15).

For boundary conditions of the first kind (Bi, — oo
or Bi, — 00), Egs. (25) and (27) become

(57/3) + 4n(n — 1)

—2¢\/1-¢°
for case I and

(7n/3) + 4n(n— 1)

—2y/1- ¢
for case II.

If we now put ¢ = 0 (negligible friction between the
film’s free surface and the gas), we will get the known [5]
asymptotic formulas

Iy =
2 arccos (¢)

;ll —

2 arccos (¢)

5
)VL%§+4(}1—1)

for case I and

i %;+4(n -1

for case II.
We will now find approximate expressions for the
integrals

/1(1 — A)W(E)de.
¢



J.L. Lockshin, M.K. Zakharov | International Journal of Heat and Mass Transfer 44 (2001) 4541-4552 4547

0.1
0
-0.1 =
'.’./
K2
-02 [
/
-0.3
-1 -075 -05 -025 0 025 05 075 1 (I)
(a)

-0.05 [+

0.05

-0.1 ¢
-1 -075 -05 -025 0 025 05 075 1

(b)

Fig. 3. Relative error between the exact value of the first (a) and second (b) eigenvalues and the first and second roots of (25) for case I

and of (27) for case II.

It can be seen from Eq. (B.1) that

! 1 (0%, 0¥ v,
1 _ 2 ,1/2 £ n n _ n
/4, (1=&)¥, de 2zn< o ol "amg);

which can be rewritten using the boundary equations in
(10)

! 1 o [0V
11— deE=——w (1 "+ Bi,Y
»[b ( é) ndé 2/1" Vl( )a)bn( 66 + Ly n) .
1 o /oY, .
+2/1n W”(d))ﬁln( E Blgll’,,)‘d).

For case I, we will insert the constants 4} and 4} from
(16): it can be seen that

dy!
— =0
dc [,
and

1
i(d_% )o
02\ d¢ |y
Then

/¢ (1-&)(P() de

-1 0 [oY!
=—¥()— ”—B'W‘I’l)
2 Ol )az;< og

1

w,(1) d o0 p
=— 2 d—i}ZA(gb,AL,O,BlW).

However, because /If, is the nth root of Eq. (15) when
Bi, = 0, we find from (25) that

NG .0,Bi,) = 25 (1— ) (1)

d}
43,1173 r N
{@ Gy (et m)
_(_l)nw
Bi,, 3-23 Lagotas 378 2 333 ’
XJ <7r(2/3)+2/’ ()" F(1/3)> +<BIWF(2/3)2> ]
Therefore,
1 00
ego L Tyl
O 0) Pe(l—Q)“;C"lP"(g)
o ()’
></0 ﬁw(x)exp<—m(9—ﬂ>dx7
(28)
where

ch={ - 14271, (1- ) " (2) ")
/ {5(;;)—”3 sin ((n/12) + (4,,/4)(sgn($){(¢) — 7))
= (=1)"(sgn(¢){(¢) —7)
X\/(Biw + 1.837(&}1)2/3>2 +3Bi§v}, (29)

and (24) can be used to calculate ¥!(¢). In the same
way, for case II expressions (16) and (27) can be used to
find

0"(&,0) = m fj ()
0 Gy
X /0 Ug(x) exp < — m(@ - x)) dx,
(30)
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where
CM = —7.768Bi (211)7/6/{4msin((n/12)
+ (sgn(¢)L(¢) — m)(2,/4))
— (= 1 (sen()U(d) — m)y/BE + (A1) (1 - ¢>2)}
(31)

and P(¢) can be calculated by using (26).

Numerical results show that it is preferable to cal-
culate the coefficients C} and C}' exactly from (18). The
relative error between the exact values of Cl, CII and the
values given by (29) and (31) is shown in Fig. 4; for
higher-order coefficients, this error can be only less.

If ¥, (x) and 9J,(x) are constant, then for both cases
(19) can be written as

00 )VZ
O 0) =1+ CP,(&exp ( M@).
n=1 -

For boundary conditions of the first kind (Bi, — oo
or Bi, — 00), Egs. (29) and (31) can be simplified:

e'(¢, 9)_171352{{

><exp< P(l )} {sgn(¢p

and

(&0 =1-7. 7682[{ P!

ol

(33)
05

1-?) ) T W)

- ﬂ}] (32)

=0.05

01075705025 0 025 05 075 14

Fig. 4. Relative error between the exact value of the second
coefficient C, in (18) and the approximate values calculated
from (29) for case I and from (31) for case II.

respectively. These equations coincide with the numeri-
cal and asymptotic results given in [5] for ¢ = 0.

Temperature profiles calculated from (32) and (33)
are shown in Fig. 5(a) and (b) for ¢ = —0.2 and Fig. 5(c)
and (d) for ¢ = 0.2 at dimensionless height

0

———=0.1.
Pe(l — Q)

The Nusselt (Sherwood) number in accordance with
(21) equals

Nu(6) = w H ZC P2 (¢

XexP(Pe(l—Q)49)}/{; 72
T exp <_Pe(1 N Q) 0) H

while the average Nusselt (Sherwood) number in ac-
cordance with (23) equals

Nig () = 2730 ¢ Pe(l 0_ o (i G, (&)

3

7
X exp (— mO) ) .

As before, ¢ =1 for case I and & = ¢ for case II.
Graphs of Nu(0) are shown in Fig. 6 for various values
of ¢, Biy and Bi,.

n=1 n

4. Analysis

We will compare transfer processes for two cases:
¢=-02 (Q=-0.25) and ¢ =0.2 (2 =0.17). Other
values could have been chosen; however, the qualitative
differences for ¢ < 0 and ¢ > 0 can be discussed, and
these differences will become more (less) pronounced for
values of ¢ that are further (closer) to 0. The reader
should be reminded, however, that all conclusions are
valid only for laminar films.

First, we will analyze the temperature profiles shown
on Fig. 5. The transfer processes are more efficient for
¢ = 0.2 in both case I and case II. This can be explained
by considering the differences in the speed profile. The
maximum local speed in the film for ¢ = —0.2 is at-
tained at an inner point. During the transfer process, the
heat or mass flow reaches this layer; since it is faster than
its neighboring layers, heat or mass transfer to the rest of
the film will take place further down the wall, thereby
decreasing the effectiveness of the transfer process. For
¢ = 0.2, on the other hand, the maximum local speed is
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0
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0.2

0 ¢

0.2 0.4 0.6 0.8

Fig. 5. Temperature profiles calculated at dimensionless height 0/Pe(1 — 2)* = 0.1 for Bi = oo (solid lines) and Bi = 10 (dotted lines).
(a) case I: ¢ = —0.2, Bi,, = oo and Bi,, = 10; (b) case II: ¢ = —0.2, Bi, = oo and Bi, = 10; (c) case I: ¢ = 0.2, Bi,, = oo and Bi,, = 10;

(d) case II: ¢ = 0.2, Bi, = oo and Bi, = 10.

attained at the liquid/gas interface and the transfer
process is more efficient.

It can also be seen that in terms of mean temperature,
transfer between the film and the gas is always more
effective than transfer between the film and the wall for
equal values of Bi,, and Bi,. This is to be expected, as the
average temperature is defined by (4), in which the in-
tegral weight function (1 — &%) is minimal for the layers
close to the wall and maximal for the layers close to the
gas interface.

These conclusions are supported as well by the be-
havior of the Nusselt numbers shown in Fig. 6. First of
all, the value of Nu(0) is always greater for ¢ = 0.2 than
for ¢ = —0.2. Additionally, the Nusselt numbers
stabilize much faster for ¢ = 0.2, indicating that the
transfer process approaches completion at smaller val-
ues of 0. Secondly, the Nusselt numbers are always
greater for case II for equal values of Bi,, and Bi, . The
heightened effectiveness of transfer for case II as com-
pared with case I is also evident in the weaker influence

of the Biot numbers: the difference between Nu''(6) for
Bi, = 10 and Nu"(0) Bi, = oo is smaller than the corre-
sponding difference between Nu'(0) for Bi, = 10 and
Nul(0) for Bi,, = oo.

Fig. 7 shows that for both cases the maximum Nus-
selt number is achieved at ¢p = 1 for all values of Biy, and
Bi,. This corresponds to the behavior of the eigenvalues
as functions of ¢ shown in Fig. 2 in accordance with
(22). Heat or mass transfer will take place more effec-
tively for ¢ — 1 (Q — +o00) because the fast layers at
the gas interface create a heightened temperature or
concentration difference through the film, leading to a
more effective transfer process (see Fig. 1). If ¢ — —1
(2 — 0.5), then, first of all, the average speed of the film
decreases. Secondly, the location of the maximum local
speed inside the film, rather than on the gas interface,
decreases the effectiveness of the transfer process as de-
scribed earlier. Therefore, the gas flow should be con-
current to the film in order to intensify heat or mass
transfer.
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Fig. 6. Nusselt (Sherwood) numbers Nu(6) for Bi = oo (solid lines), Bi = 10 (dotted lines) and Bi =1 (dashed lines). (a) case I:
¢ =-0.2, Bi, =1 and oo; (b) case II: ¢ =—-0.2, Bi, =1, 10 and oo; (c) case I: ¢ =0.2, Bi, =1, 10 and oo; (d) case II:
¢ =0.2, Bi, =1, 10 and oo.
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Fig. 7. The value of limy_.. Nu(0) for (a) Bi, = 10 (case I), Bi; = 10 (case II) and (b) Bi,, = oo (case I), Bi, = oo (case II) as functions of
¢. Solid lines are used for case I, dotted lines are used for case 11.

X 1
Appendix A My (x) = x" /2 exp < — 5)<P(m —k+ 3 2m + l;x).

Confluent hypergeometric functions can be written in Asymptotic expressions for M; ,(x) as x — oo are given
terms of Whittaker’s function: in [8]. First of all,
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My (dhox) = 22/3r(2m+ 1)k’”+<1/6>{exp {(m—k—l—é) ni}
[ 72/3 2/3 27'Cl
277 (4k)7 (x—1 ) exp 5
1y .
+exp {— (m—k—o—g)m}
._ —2/3 2/3 27[1
X Ai |2727 (4k)P [ x -1 exp(—T ,

x=1+0(k*7), (A1)

X A

-

where Ai(x) is Airy’s function:
3-2/3 > 31(1/3)
Ailx 4 n 311
™ =Tam ( 2 G )
371/3 (/)n 3n+1
T3 <x+; Gar)t )

3"(o+1/3), = Ba+1)(3u+4)--- (30 +3n—2).

Secondly, [8] also shows that
2 1
My (4k cos? g\ﬁrz 1)k
i (4k cos® p) - (m—i— )k s
X €OS [k( sin (2p) — 2p + 7)

—(m-f—g)], —g<p<g. (A.2)

Using (A.1) and (A.2), the following asymptotic ex-
pansions can be immediately found:

o 3w)=(1-0)
X cOS (%C(qﬁ)) exp ();iz) (A.3)

X sin (%g“(d))) exp <%¢)2)7 (A4)

)exp <%) (A.5)

y) -5/6 3 2/3
i(3)
X COS( —

Asymptotic expressions for (& (5 — 1))/4, (3/2); 2&* will
now be derived. If & = ¢, then we find from Eq. (A.2)
that

5-13 —1/4 . o\ —3/4
o( 25550 = (-2 )
1
tan (p(4, ¢))

<sin (22000 o (12),

= arccos (/4/(2 —2)|¢|) and {,(4,¢) =

200, ) +n. As A—o0 p(ld)—

X

where p(Z,
sin (2p(4, ¢>))
arccos (|¢]), so

L) = L) +% (2 - 2¢2) +o(%2>
and

Agzzl(z?dw‘;—z(cwHT 1)

-M ~
e
=
|
)
=
o
@,
=]
=

This gives

B 22 gy y
@(5447;)%) L) (-¢) sin <1“¢)

~

- arcsin(qﬁ)) exp (%

(S}
N—

In the same way, it can be shown that

<I>(3;/L L Y ) = (1 ¢2)7l/4cos (%C(q&)

- arcsin(qﬁ)) exp (%’52)
(A.8)

If £ =1, then we will take the first terms in each of the
sums in (A.1):

5-73
¢ - .
< 4 727&)

~ _ﬁ25/6/175/6

3723 sin 1-2 +n
T4z
r(2/3) 4 "6
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and

3—721
| ——, =2
( 4 727)
3723 1-2 i
~ 5/651/6 r
~ /2% {F(2/3)cos( ) n+6)

_ F3(_11//;) (%) . cos (1 ;/ln-l—%)] exp <%>

Appendix B

Let f(x) be a solution to the differential equation

% <p(x)%f> + ()?q(x) + r(x))f =0,

where p(x), g(x) and r(x) are continuously differentiable
functions and 4 is a parameter. Then the following
equality is valid:

of 0 02
/Q(x)fz(x)dle%? (%%—/%) + const.

Indeed, differentiation of both sides of (B.1) by x gives

_plx) (of &f of
4 0) =5 7 <a7 - 6/16x2>

idp(@f of O )

+

2/ dx\ 8. ox ~ diox
Lo @ dpds
2202\ P2 T dx ox

In our case, the function ¥(¢) (Eq. (13)) is clearly infi-
nitely differentiable by both & and A and therefore sat-
isfies (B.1), where p(x) = 1, g(x) = 1 —x? and r(x) = 0.
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